Adaptive filtering of EEG/ERP through Bounded Range Artificial Bee Colony (BR-ABC) algorithm

نویسندگان

  • Mitul Kumar Ahirwal
  • Anil Kumar
  • Girish Kumar Singh
چکیده

a r t i c l e i n f o a b s t r a c t Keywords: EEG/ERP Adaptive filter SNR LMS RLS ABC In this paper, the Artificial Bee Colony (ABC) algorithm is applied to construct Adaptive Noise Canceller (ANC) for electroencephalogram (EEG)/Event Related Potential (ERP) filtering with modified range selection, described as Bounded Range ABC (BR-ABC). ERP generated due to hand movement is filtered through Adaptive Noise Canceller (ANC) from the EEG signals. ANCs are also implemented with Least Mean Square (LMS) and Recursive Least Square (RLS) algorithm. Performance of the algorithms is evaluated in terms of Signal-to-Noise Ratio (SNR) in dB, correlation between resultant and template ERP, and mean value difference. Testing of their noise attenuation capability is done on contaminated ERP with white noise at different SNR levels. A comparative study of the performance of conventional gradient based methods like LMS, RLS, and ABC algorithm is also made which reveals that ABC algorithm gives better performance in highly noisy environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive filtering of EEG/ERP through noise cancellers using an improved PSO algorithm

In this paper, event related potential (ERP) generated due to hand movement is detected through the adaptive noise canceller (ANC) from the electroencephalogram (EEG) signals. ANCs are implemented with least mean square (LMS), normalized least mean square (NLMS), recursive least square (RLS) and evolutionary algorithms like particle swarm optimization (PSO), bacteria foraging optimization (BFO)...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

Optimal Operation of Microgrid in the presence of Real-time Pricing Demand Response Program using Artificial Bee Colony Algorithm with a Modified Choice Function

Abstract: Microgrid is one of the newest technologies in power systems. Microgrid can usually has a set of distributed energy resources that makes it able to operate separate from power grid. Optimal operation of microgrids means the optimal dispatch of power resources through day and night hours. This thesis proposed a new method for optimal operation of microgrid. In this method, real-time pr...

متن کامل

Evaluation of Cutting Performance of Diamond Saw Machine Using Artificial Bee Colony (ABC) Algorithm

Artificial Intelligence (AI) techniques are used for solving the intractable engineering problems. In this study, it is aimed to study the application of artificial bee colony algorithm for predicting the performance of circular diamond saw in sawing of hard rocks. For this purpose, varieties of fourteen types of hard rocks were cut in laboratory using a cutting rig at 5 mm depth of cut, 40 cm/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Digital Signal Processing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014